Про квантовые компьютеры в РФ, по итогам того, что в 2021 году Росатом направил на развитие квантовых технологий и создание исследовательской инфраструктуры порядка 6 миллиардов рублей. А до конца 2024 года в это направление планировалось закачать 23 миллиарда рублей.
- «Создан прототип квантового компьютера на ионах иттербия», 25 февраля 2022
-
«Примерно за полтора года интенсивной работы нам удалось собрать систему на ионах иттербия, продемонстрировать двухкубитные операции с достоверностью 66 % и показать полный набор кудитных операций с достоверностью порядка 85 %», — заявил директор Физического института Академии наук (ФИАН) Николай Колачевский на заседании научного совета РАН «Квантовые технологии» в декабре прошлого года.
«Платформа на ионах демонстрирует одни из самых интересных результатов, что особенно примечательно, так как пять лет назад ионы не считались приоритетным направлением развития. Для нас это первый значимый результат в работе над дорожной картой по квантовым вычислениям», — отмечает руководитель проектного офиса по квантовым технологиям «Росатома» Руслан Юнусов.
Чтобы создать из атома иттербия ион, металл испаряют, из паров выбирают изотопы иттербий‑171 и воздействуют на них лазером, чтобы удалить с внешней орбитали один электрон. Ионы помещают в ионную ловушку — систему электродов, которая создает быстро колеблющееся электромагнитное поле. Вся система находится в вакууме.
Управляют ионами с помощью лазеров. Сначала лазерные импульсы охлаждают ионы практически до абсолютного нуля (–273,15 °C). Для выполнения квантовых алгоритмов используется другой лазер, с очень узким спектром — порядка 1 Гц. Ученые предельно точно контролируют, куда светит лазер, его частоту, интенсивность и фазу. Изменяя эти параметры, можно управлять квантовыми состояниями иона.
Каждый энергетический уровень кукварта можно представить как состояние пары кубитов: первый — 00, второй — 01, третий — 10, четвертый — 11. «Если взять пару ионов с энергетическими состояниями 1 и 4, то состояние эквивалентного квантового регистра из четырех кубитов будет 0011, а у пары с состояниями 2 и 3 состояние регистра будет 0110», — комментирует Илья Семериков. На этом компьютере уже можно реализовывать простейшие алгоритмы, в частности Дойча — Йожи и Гровера. Первый применяется для определения типа функции (константная или сбалансированная), второй — для быстрого поиска в неупорядоченной базе данных.
Процент достоверности, или фиделити, — это показатель вероятности корректного вычисления. Он определяется после серии экспериментов. Данные обрабатываются, усредняются, и вычисляется достоверность. «Пока хвалиться особенно нечем, потому что все это уже сделано зарубежными коллегами, правда, на другой физической системе — на кальции, но довольно давно, — признал Николай Колачевский. — Впрочем, учитывая наши возможности и то, что это первый подход к снаряду, получен, на мой взгляд, обнадеживающий результат, который позволяет взяться за оптимизацию качества операций». Для сравнения, команды компаний IonQ и Quantinuum — лидеров в создании квантовых компьютеров на ионах — уже работают с 10- и 20‑ионными кубитами в каждом процессоре, и достоверность двухкубитных операций у них превысила 98 %.
- «В России создали 16-кубитный квантовый компьютер», 15 июля 2023
-
На днях на Форуме будущих технологий физики из ФИАН вместе с коллегами из Российского квантового центра представили 16-кубитный квантовый компьютер на ионах иттербия. Примерно за минуту компьютер выполнил моделирование молекулы гидрида лития, на что обычному компьютеру потребовалось бы гораздо больше времени.
«У нас всё получилось, — подвел итог вычислениям руководитель «Росатома» Алексей Лихачев, который доверил удалённо запустить вычисления президенту России Владимиру Путину. — Это практическая задача».
- «Квантовые вычислители запутали и изменили три кубита за раз», 16 октября 2023
-
Двум группам физиков на разных видах нейтральных атомов удалось добиться высокой точности одно-, двух- и даже трехкубитных операций, протестировать код коррекции ошибок и усовершенстовать свои предыдущие результаты в приготовлении запутанных состояний. Обе работы (1, 2) опубликованы в журнале Nature.
Физикам под руководством Джефа Томпсона (Jeff D. Thompson) из Принстонского университета удалось реализовать на атоме иттербия-171 одно- и двухкубитные вентили с точностями 99,9 и 98 процентов соответственно. Помимо этого они предложили и реализовали эффективную схему коррекции ошибок, которая исправляет ошибки во время вычисления. О том, что атомы редкоземельных металлов могут оказаться очень удобны в качестве кубитов, говорили и прежде.
Еще одно из достоинств иттербия-171 физики использовали при реализации квантового кода коррекции ошибок. Во время вычислений они следили за флуоресценцией для фиксации кубитов, в которых возникают ошибки и их исправления. Самыми удобными с точки зрения детектирования и исправления оказываются ошибки «стирания» — когда электрон в атоме неконтролируемо сваливается в основное состояние. Важно, что при таких ошибках легко определить в каком именно кубите возникла ошибка, а сама ошибка не влияет на состояние других кубитов, это сильно упрощает сам процесс коррекции.
Кстати, постквантумную криптографию ТК26 с ИнфоТеКС уже активно делают — скоро будут соответствующие ГОСТы.
#
quantum #
quantumcomputing #
квантовыевычисления #
lang_ru @
Russia